

Energy efficient & safe Sub Saharan African peri-urban electrification

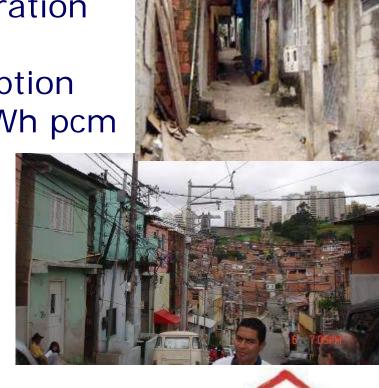
Benoît Dôme
Director Copper Benelux
European Copper Institute
Building Wire Manager
Europe & Africa

Slum Electrification – Poverty & Energy:

	Population (million)	GDP/Pop (US\$/capita)	Electricity Consumption (kWh/capita)		
Brazil	164	4.9	1,969.5		
USA	268	30.3	12,235.1		
China	1,244	0.7	768.5		
India	966	0.4	411.0		
Africa	731	0.6	478.8		
	(Source: EIA,2000)				

- Close relationship between poverty and energy access
- Need for quality electrification programmes based on best practice to improve these living conditions.

Brazil - Sao Paolo - Paraisópolis



Leonardo ENERGY

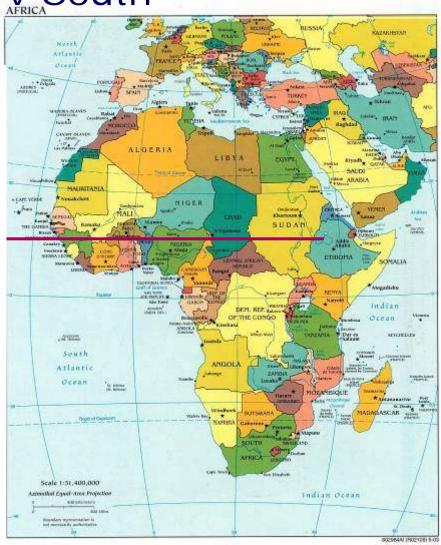
Urban concentration

Energy consumption 300+ kWh pcm

Brazil - Sao Paolo - Paraisópolis

- Reduced kWh →200
- Anti-theft [external]
- Pre-paid meter
- Safe & efficient systems
- Urban integration
- Sustainable
- [Easily] replicated Leonardo ENERGY

- Theft criminality
- Urban concentration
- Energy consumption300+ kWh pcm


\$ collection

Attitude change
 ["free" electricity
 →thinking about its use]

Sub-Saharan Africa – peri-urban business plan –North v South

- Africa 900 million people
 - 60% Sub Saharan Africa [SSA]
 - Urban rural split ~ 40%
 - Peri-urban range from 38% → 90+%
 - Peri-urban SSA growing 4% pa
- Affluence
 - From the very poor [GDP pc @ \$188ppp → \$16,450]
- Range of energy consumption 0.013 BkWh → 209+BkWh
- Nature of "non-technical" losses
 - Fraud ["legal" clients selling on to multiple households]
 - Theft exists but in many cases far less than eq Brazil

- Relevance to Sub-Saharan Africa [SSA]
 - Poverty / legal access paradigm throughout
 - Peri-urban growth +/- 4% pa [Mahgreb ~- 1%]
 - Issue of urban integration
 - Electricity demand v capacity
 - All MDGs dependent on electricity
 - Energy inefficiencies clearly identifiable
 - Energy efficiency improvements significant & realisable.

Current situation: growing & unfair

Massive urban new build

.. most with TV aerials.

- Irregular access up to 80+% of these expanding zones
- Household avg. consumption 128 kWh legal or illegal
- Non-conforming users waste ~50% of their electricity through energy inefficiencies
- Their quality of service is far lower because of non-conforming connections
- "Theft" not as common as in Brazil users pay ~ 65% more than regular clients
- Consequently ability & willingness to pay greater

Current situation: dangerous & inefficient

Dangerous & inefficient bared wires

Up to 1000m to nearest legal access point

Red line shows illegal connections openly cross common ground endangering animals and people alike.

- Where to start the roll out & why Dakar?
 - A manageable zone representative of the many and varied prevailing conditions
 - Dakar Pikine
 - Large enough to provide benchmark data
 - Neither most/ least affluent
 - Prevailing conditions to be found throughout SSA
 - Electricity balance ...
 - FISUEL /PROQUELEC active
 - Utility share the aims

Choice of where to start – Sénégal – Dakar – Pikine district

- Small enough to be manageable
 - 87,000 peri-urban homes
 - 1,250 to start
- Large enough to act as a basis for replication – Sénégal:
 - $\sim 750,000 + peri-urban homes$
- FISUEL/ PROQUELEC, USAID,
 UN, EdF/ AfD & liberalising Utility presence
- Median characteristics representing the above
 - Scores around the middle in everything
- Typical fraud circumstances.

Current situation: Dakar - Sénégal

Quarter

Exterior

Interior

Multi-selling on

Undersized connections

Dangerous connections

- Programme outcomes
 - Energy efficiency actions:
 - New transformers to enable extra distribution
 - Installing efficient final distribution [0.85 mm² cable replaced by coaxial 6.5 mm²]
 - New poles enabling efficient access to households
 - Households earthed externally
 - New circuitry [1.5 mm² and 2.5 mm²]
 - Energy efficient bulbs replace current ones
 - Class G [at best] fridges replaced by 120litre Class A

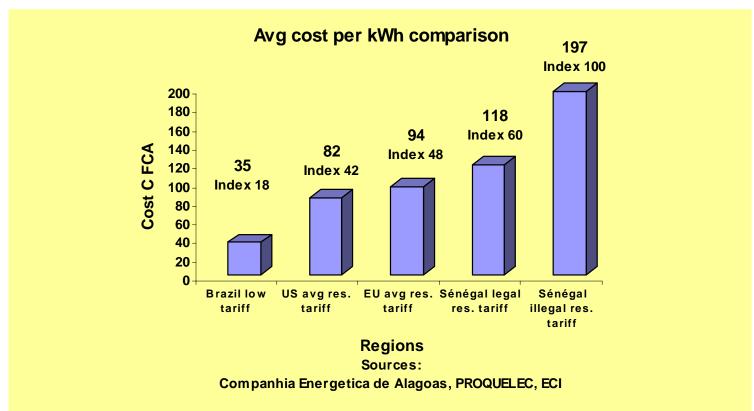
Energy savings derived from regularising illegal home electricity users

	Cables	Lighting	Refrigerator	Transformer (per user)	Total
Share	27%	38%	33%	2%	
Monthly savings (kWh)	16	22.5	19.5	1.2	59.2
Yearly savings (kWh)	192	270	235	14	711

46% kWh reduction – no loss of use Equal QoS as the regular neighbours

"Les venants" no longer

- Programme outcomes
 - Financial consequences:
 - Current non-conforming users pay ~50% more than they should due to energy inefficiency
 - Utility benefits improved <u>Demand Side</u> <u>Management</u>
 - Fraud / "non-technical" losses opportunity for
 - New client opportunities for the Utility
 - Payment collection logically not/ far less of an issue than in the Pilot
 - Other Utility economies to be verified by the first 1,250 homes first Phase – order of magnitude of 20% energy efficiency savings.



Current status – PROQUELEC home condition survey

- Paying over the odds
- and expensive too by International comparisons!

	Sénégal Urban Households (745,000)	Peri-urban households (64% - 476,800)	Of which a high proportion need improved energy efficient systems and equipment (342,152)
At an annual consumption of 1,533 kWh	1,142,085 MWh	730,934 MWh	524,519 MWh
Forecast avg. energy savings of 711 kWh over 1,533 kWh = 46%			241,279 MWh
Net energy saving for SENELEC			~20%

- Savings from a more efficient grid / infrastructure
- Potential additional revenues available

- Programme outcomes
 - Financial consequences:
 - Current non-conforming users pay 68% more than their neighbours
 - No loss of revenues for the Utility
 - Payment collection logically not/ far less of an issue than in the Pilot
 - Other Utility economies not quantified as yet but potentially significant – 20% energy efficiency savings not out of the question
 - Neighbours likely to follow the energy efficiency [for them money saving too] example of the nowconforming households.

Savings in terms of Carbon emissions per household

	kWh	toe	Tons of CO ₂
Savings per household	711	0.061131	0.451

Total programme:

- 1,039,036 t.o.e.
- 7,437,267 tons of CO₂

- Programme outcomes
 - Re-cycling old materials:
 - Phase 1 plan to extract energy inefficient and polluting refrigerators from the market
 - Subsequent Phases
 - Aim to set up a network of re-cycling centres throughout the region.
 - These centres will ethically recycle:
 - Refrigerators
 - Inappropriate cable and wire
 - Lamps
 - Other [up stream] materials
 - Potential collaboration with UNDP-GEF and SIMS Metal Management among others

- Programme outcomes
 - Social consequences:
 - Integration
 - Health
 - Injuries [eg electrical, fire in the home] can now be treated officially
 - Sanitation
 - Contribution
 - Access to being active members of the community
 - Benefits
 - Education

- Programme user benefits
 - Improved electrical safety, leading to reduced incidents of electrical shock and electrical fires
 - Improved reliability of supply, improving food quality and reliability of operations for small businesses relying on electricity
 - Improved energy efficiency and reduced greenhouse gas emissions.

- Programme Management
 - National Utility, Safety Groups Authorities
 - Work-in-kind
 - Network staff & installer training
 - Home user education
 - National Financing
 - Micro-finance potential
 - Some of the household savings invested
 - Revenue from re-cycled goods
 - Clean Development Mechanism [CDM]
 - Potential for national programmes
 - Potential for voluntary CDM initiatives

- Programme Management
 - International –Donors and Work-in-kind
 - Network upgrade
 - Equipment subsidies allowed for by volumes required
 - Communications, training and monitoring programmes financed by donors
 - Importance of a phased approach
 - Demonstration of auto-financing
 - Need for funding injection to "kick-start" the process.

- A viable "business" model
- Do not underestimate
 - The speed of non-conforming peri-urban growth
 - The economic, energy efficient and social benefits
 - The need to provide a bed rock of accessible energy to enable these improvements to happen.

Benoît Dôme

https://eurocopper.box.net/shared/a4fkjl 5jk9

Energy efficient & safe Sub Saharan African peri-urban electrification

Benoît Dôme
Director Copper Benelux
European Copper Institute
Building Wire Manager
Europe & Africa